Thursday, 5 December 2013

MA2111 Mathematics I ANNA UNIVERSITY QUESTION PAPER QUESTION BANK IMPORTANT QUESTIONS 2 MARKS AND 16 MARKS

MA2111 Mathematics I  ANNA UNIVERSITY QUESTION PAPER QUESTION BANK IMPORTANT QUESTIONS 2 MARKS AND 16 MARKS


MA2111 Mathematics I  ANNA UNIVERSITY QUESTION PAPER QUESTION BANK IMPORTANT QUESTIONS 2 MARKS AND 16 MARKS


PLZ SEND REQUEST FOR ORIGINAL QUESTION PAPER IF IT IS UN VIEWABLE

B.E./B.Tech.Degree Examinations, November/December 2010
Regulations 2008
First Semester
Common to all branches
MA2111 Mathematics I
Time: Three Hours Maximum: 100 Marks
Answer ALL Questions
Part A - (10 x 2 = 20 Marks)
1. If ¡1 i s an eigen value of the matrix A = ยต 1 ¡2
¡3 2 ¶, ¯nd the eigen values of A4
using properties.
2. Use Cayley-Hamilton theorem to ¯nd A4 ¡ 8A3 ¡ 12A2 when A = · 5 3
1 3 ¸:
3. Find the centre and radius of the sphere 2(x2 + y2 + z2) + 6x ¡ 6y + 8z + 9 = 0.
4. State the conditions for the equation ax2 +by2 +cz2 +2fyz +2gzx+2hxy +2ux+
2vy + 2wz + d = 0 to represent a cone with vertex at the origin.
5. Find the radius of curvature of y = ex at x = 0.
6. Find the envelope of the family of straight lines y = mx +
1
m
, where m is a
parameter.
7. If u = f(x ¡ y; y ¡ z; z ¡ x), show that
@u
@x
+
@u
@y
+
@u
@z
= 0.
8. If u =
x + y
1 ¡ xy
and v = tan¡1 x + tan¡1 y, ¯nd
@(u; v)
@(x; y)
.
 132  132  132 
9. Evaluate
1 Z0
2 Z0
ex+y dx dy.
10. Evaluate
1 Z0
2 Z0
3 Z0
xyzdzdydx:
Part B - (5 x 16 = 80 Marks)
11. (a) (i) Using Cayley-Hamilton theorem, ¯nd the inverse of the matrix A = 24
¡1 0 3
8 1 7
¡3 0 8
35
.
(8)
(ii) Find the eigen values and eigen vectors of the matrix 24
2 2 1
1 3 1
1 2 2
35
.
(
8
)
OR
11. (b) Reduce the quadratic form
2x2
1 + x2
2 + x2
3 + 2x1x2 ¡ 2x1x3 ¡ 4x2x3
to canonical form by an orthogonal transformation. Also ¯nd the rank, index,
signature and nature of the quadratic form. (16)
12. (a) (i) Find the equation of the sphere having its centre on the plane 4x¡5y¡z =
3 and passing through the circle x2 + y2 + z2 ¡ 2x ¡ 3y + 4z + 8 = 0;
x ¡ 2y + z = 8. (8)
(ii) Find the equation of the right circular cone whose vertex i s the origin,
whose axis i s the line
x
1
=
y
2
=
z
3
and which has semi-vertical angle 30±.
(8)
OR
12. (b) (i) Find the equation of the sphere passing through the circle x2 + y2 + z2 +
x¡3y +2z ¡1 = 0, 2x+5y ¡z +7 = 0 and cuts orthogonally the sphere
x2 + y2 + z2 ¡ 3x + 5y ¡ 7z ¡ 6 = 0. (8)
(ii) Find the equation of the right circular cylinder whose axis is
x ¡ 1
2
=
y ¡ 2
1
=
z ¡ 3
2
and radius 2. (8)


13. (a) (i) Find the equation of the circle of curvature of the curve px + py = pa
at ³a
4
;
a
4´. (8)
(ii) Prove that the radius of curvature of the curve xy2 = a3 ¡x3 at the point
(a, 0) is
3a
2
: (8)
OR
13. (b) (i) Show that the evolute of the hyperbola
x2
a2 ¡
y2
b2 = 1 i s (ax)2=3 ¡(by)2=3 =
(a2 + b2)2=3. (10)
(ii) Find the envelope of
x
a
+
y
b
= 1, where a and b are connected by the
relation a2 + b2 = c2; c being constant. (6)
14. (a) (i) Find the Taylor's series expansion of ex cos y in the neighborhood of the
point ³1;
¼
4 ´ upto third degree terms. (8)
(ii) If u = log(x2 + y2) + tan¡1 ³y
x´, prove that uxx + uyy = 0. (8)
OR
14. (b) (i) Discuss the maxima and minima of the function f(x; y) = x4 +y4 ¡2x2 +
4xy ¡ 2y2. (8)
(ii) Find the Jacobian of y1; y2; y3 with respect to x1; x2; x3 if y1 =
x2x3
x1
; y2 =
x3x1
x2
; y3 =
x1x2
x3
. (8)
15. (a) (i) Evaluate
1 Z0
1 Zx
e¡y
y
dx dy by changing the order of integration. (8)
(ii) Evaluate
1 Z0
1 Z0
e¡(x2+y2) dx dy by converting to polar coordinates. Hence
deduce the value of
1 Z0
e¡x2
dx. (8)
OR
15. (b) (i) Using triple integration, ¯nd the volume of the sphere x2 + y2 + z2 = a2.
(8)
(ii) Find the area bounded by the parabolas y2 = 4 ¡ x and y2 = x by double
integration. (8)

Anna University Results Nov Dec 2013 UG Results 2014 for 1st,3rd,5th,7th Semester

Anna University Results Nov Dec 2013 UG Results 2014 for 1st,3rd,5th,7th Semester   Nov Dec 2013 UG Anna University  Exams  Results 201...